| make prediction | 0.61 |
| classify image | 0.59 |
| use datum | 0.56 |
| create connection | 0.55 |
| produce output | 0.55 |
| recognize pattern | 0.53 |
| learn by example | 0.52 |
| learn | 0.51 |
| take input | 0.48 |
| process information | 0.47 |
| More » |
| an input layer | 0.57 |
| multiple layers | 0.57 |
| dozens of neurons | 0.28 |
| hidden layer | 0.28 |
| weight | 0.25 |
| 60 million parameters | 0.25 |
| single layer of data | 0.25 |
| cycle | 0.25 |
| many parameters | 0.25 |
| technological advances | 0.36 |
| higher quality move sel… | 0.28 |
| next iteration | 0.28 |
| stronger self-play | 0.26 |
| trained | 0.79 |
| employed | 0.65 |
| created | 0.60 |
| adjusted | 0.49 |
| modeled after human bra… | 0.49 |
| organized in layer | 0.46 |
| described | 0.44 |
| inspired by brain | 0.43 |
| reprogrammed | 0.43 |
| shown in figure | 0.41 |
| More » |
| classification | 0.55 |
| deep learning | 0.52 |
| regression | 0.28 |